20140501

目次

- 1. ステッピングモータお試しキット概要
- 2. 接続図
- 3. 接続方法
- 4. 使用方法
- 5. MCH 設定内容
- 6. その他

1. ステッピングモータお試しキット概要

当キットは MCH-5 をコントローラとし、AD シリーズのドライバでユニポーラ、バイポーラのモータを駆動できるツールです。*一度に駆動できるモータは1つだけです。

当キットは以下の部品で1セットになります。

〇キット内容 ①ケース ②電源ケーブル 3電源 ④電源-MCH, 電源・ドライバ接続ケーブル (5)MCH-5 ⑥MCH・ドライバ接続ケーブル (7)AD1431 バイポーラ ⑧ドライバ-モータ接続ケーブル(AD1431 用) ⑨モータ(PFCU20-40S4GA2) ⁽¹⁾AD1231 (II)ドライバ・モータ接続ケーブル(AD1231 用) ュニポーラ 12リニアステップモジュール(PFCL25-48D4) 13精密ドライバ

2. 接続図

○AD1231 接続の場合(ユニポーラ)

AD1231 接続時

○AD1431 接続の場合

AD1431 接続時

3. 接続方法

①電源ケーブルと電源の接続

電源ケーブルのスイッチが切になっていることを確認後、電源に接続してください。

②電源とMCH、ドライバとの接続

電源・MCH,電源・ドライバ接続ケーブルで電源・MCH間と電源・ドライバ間を接続します。

電源-MCH, 電源・ドライバ接続ケーブル

③MCH とドライバとの接続

MCH・ドライバ接続ケーブルで MCH・ドライバ間を接続します。

*MCH 側を接続するときはピンヘッダの黒くマークされている方が1番になるように接続してください。 *MCH-ドライバ間の接続方法はAD1231、AD1431のどちらでも同じです。

*挿入後は精密ドライバで固定してください。

MCH-ドライバ接続後

④ドライバとモータの接続

○AD1231 の場合

ドライバ・モータ接続ケーブル(AD1231用)でドライバ・モータ間を接続します。 *モータとケーブルは同色の線同士を接続してください。

リニアステップモジュール

ドライバ-モータ接続ケーブル (AD1231 用)

AD1231

・同色の線同士を接続してください。 *COM線は赤、緑の線色になっていますが、 どちらも赤色のモータ線を接続してください。

モータ・ドライバ接続後

⑤ドライバとモータの接続

○AD1431 の場合

ドライバ・モータ接続ケーブル(AD1431用)でドライバ・モータ間を接続します。 *モータとケーブルは同色の線同士を接続してください。

PM モータ

ドライバ-モータ接続ケーブル (AD1431 用)

・同色の線同士を接続してください。

モータ・ドライバ接続後

*モータ線を接続するときは芯線がターミナルに挟まるように接続してください。 モータ線の被覆を挟むとモータが正常に動作しない場合があります。

4. 使用方法

ドライバの設定確認
ドライバの設定が表と同じ設定になっているか確認してください。

	SW1-1	SW1-2	SW1-3	SW1-4	SW2
AD1231	ON	ON	ON	ON	2
AD1431	ON	ON	ON	ON	

AD1231

AD1431

電源ケーブルのスイッチを[入]にしてください。

③励磁 ON

②電源スイッチ ON

MCH の ENABLE ボタンを押して ENABLE ランプが点灯していることを確認してください。

④プログラム動作

START ボタンを押すとプログラム動作が開始されます。 プログラムは[5. MCH 設定内容 ②プログラム設定]が設定されています。

START ボタンを押すと動作開始

*リニアステップモジュールを使用する場合は 稼働子<u>を写真の位置まで移動させてからボタンを押して</u>ください。

⑤ジョグ、インチング動作

SHIFT ボタンを押しながら START ボタンを押すと動作が開始されます。 *START ボタンを1秒以上押すとジョグ動作になります。

*CW/CCW ボタンを押すと CW ランプが点灯/消灯し回転方向が変わります。

CCW 方向

*リニアステップモジュールは本体下に貼ってあるシールの方向に動作します。

リニアステップモジュール

ランプ点灯: CCW 方向→ ランプ消灯: CW 方向←

5. MCH 設定内容

MCHには以下の内容が設定されています。

①共通項目設定

		Std
低速動作速度	LSPD	100
高速動作速度	HSPD	900
加減速時間	ACC/DEC	100
速度パターンの選択	PATTERN	SP2
プログラム動作の繰り返し回数設定	CYCLE	1
操作入力の選択	CHOICH	Pn
励磁モードの選択	EXCITATION	2-2
ORG スイッチにより原点復帰方法の選択	ORG	Or-1

②プログラム設定

			Pr1	Pr2	Pr3	Pr4	$\Pr{5}$	Pr6
回転方向	CW/CCW	—	CCW	CW	CCW	CW	CCW	CW
移動量	PULSE	[pulse]	2500	2500	2500	2500	2500	2500
低速動作速度	LSPD	[PPS]	100	100	100	100	100	100
高速動作速度	HSPD	[PPS]	900	900	900	600	600	600
加減速時間	ACC/DEC	[msec]	100	100	100	100	100	100
停止時間	WAIT	[msec]	1000	1000	1000	1000	1000	1000
原点復帰選択	ORG	_	0	0	0	0	0	0

*プログラム設定は CCW/CW の動作を 3 セット繰り返す動作になっています。 速度は、初めの 3 回が 900pps、後の 3 回が 600ppps です。 *設定値が変更されている場合もあります。

6. その他

リニアステップモジュールの稼働範囲は最大で34mm程度になっています。

そのため移動量はその範囲内でその範囲内で設定してください。 *移動量 100pulse で 1mm 動作するようになっているため、 最大設定移動量は 3400pulse になります。

リニアステップモジュール

